Friday, May 29, 2009

Monday, May 25, 2009

Mound of Gravel pieces

The Gravel is rock that is of a particular particle size range. Specifically, it is any loose rock that is bigger than two millimeters (2mm) in its largest measurement (about 1/12 of an inch) and no more than 64 millimeters (about 2.5 inches). The next smaller size class in geology is sand, which is >0.0625 mm to 2 mm in size. The next larger size is cobble, which is >64 millimeters to 256 millimeters (about 2.5 to 10 inches). Gravel can be sub-categorized into granule (>2-4 mm) and pebble (>4-64 mm). One cubic foot (28.32 dm3) of gravel usually weighs about 100 pounds (45 kg).

Gravel is an important commercial product, with a number of applications. Many roadways are surfaced with gravel, especially in rural areas where there is little traffic. Globally, far more roads are surfaced with gravel than with concrete or tarmac; Russia alone has over 400,000 km of gravel-surfaced roads. Both sand and small gravel are also important for the produce of concrete.

Monday, May 04, 2009

Lava -molten rock expelled volcano


Lava is molten rock expelled by a volcano during eruption. When first expelled from a volcanic vent, it is a liquid at temperatures from 700 °C to 1,200 °C (1,300 °F to 2,200 °F). Although lava is quite viscous, with about 100,000 times the viscosity of water, it can flow great distances before cooling and solidifying, because of both its thixotropic and shear thinning properties.

A lava flow is a moving outpouring of lava, which is created during a non-explosive effusive eruption. When it has stopped moving, lava solidifies to form igneous rock. The term lava flow is commonly shortened to lava. Explosive eruptions produce a mixture of volcanic ash and other fragments called tephra, rather than lava flows. The word 'lava' comes from Italian, and is probably derived from the Latin word labes which means a fall or slide. The first use in connection with extruded magma (molten rock below the earth's surface) was apparently in a short account written by Francesco Serao on the eruption of Vesuvius between May 14 and June 4, 1737.

described "a flow of fiery lava" as an analogy to the flow of water and mud down the flanks of the volcano following heavy rain.
Felsic lava Felsic lavas such as rhyolite and dacite typically form lava spines, lava domes or 'coulees' (which are thick, short lavas) and are associated with pyroclastic (fragmental) deposits. Most felsic lava flows are extremely viscous, and typically fragment as they extrude, producing blocky autobreccias. The high viscosity and strength are the result of their chemistry, which is high in silica, aluminium, potassium, sodium, and calcium, forming a polymerized liquid rich in feldspar and quartz, which thus has a higher viscosity than other magma types. Felsic magmas can erupt at temperatures as low as 650 to 750 °C. Unusually hot (>950 °C) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in the Snake River Plain of the northwestern United States.

Mafic lava
Mafic or basaltic lavas are typified by their high ferromagnesian content, and generally erupt at temperatures in excess of 950 °C. Basaltic magma is high in iron and magnesium, and has relatively lower aluminium and silica, which taken together reduces the degree of polymerization within the melt. Owing to the higher temperatures, viscosities can be relatively low, although still thousands of times more viscous than water. The low degree of polymerization and high temperature favors chemical diffusion, so it is common to see large, well-formed phenocrysts within mafic lavas. Basalt lavas tend to produce low-profile shield volcanoes or 'flood basalt fields', because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may 'inflate' by supply of lava beneath a solidified crust. Most basalt lavas are of a'a or 'pahoehoe' types, rather than block lavas. Underwater they can form 'pillow lavas', which are rather similar to entrail-type pahoehoe lavas on land.